Chapter 3: Calculations with Chemical Formuals and Equations

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Molecular Weight = sum of the atomic weights of all of the atoms in a molecule of the substance Iron III Sulfate $\quad \mathrm{Fe}_{2}(\mathrm{SO} 4)_{3}$

Formulae weight = sum of the atomic weights of all atoms in a formula unit of the compound.
Usually the same as Molecular Weight
$\mathbf{1}$ Mole = a quantity of a substance that contains as many molecules as the number of atoms in exactly 12 g of Carbon-12.
1 Mole also equals: 6.023×10^{23} atoms $=$ Avogadro's Number
1 Mole of marbles covers the earth to a depth of 50 miles
We use moles in Chemistry so we can work with a give quantity or number of atoms or molecules.
Example 3.1 Formula Mass [Molecular Weight
Chloroform - CHCL $_{3} \quad$ Iron (III) Sulfate $-\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

C	$1 * 12.01$	12.01	Fe	$2 * 55.85$	111.70
H	$1 * 1.008$	1.008	S	$3 * 32.07$	96.21
Cl	$3 * 35.45$	$\underline{103.35}$	O	$12 * 16.00$	$\underline{192.00}$
		116.359			$399.91 \mathrm{~g} / \mathrm{mole}$

Mole Calculations: $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}+3 \mathrm{O}_{2}->\quad 2 \mathrm{CO}_{2} \quad+\quad 3 \mathrm{H}_{2} \mathrm{O}$ Ethanol Oxygen Carbon Dioxide Water

So $\mathbf{1}$ molecule of Ethanol reacts with $\mathbf{3}$ molecules [6 atoms] of Oxygen to give $\mathbf{2}$ molecules of Carbon Dioxide and $\mathbf{3}$ molecules of Water

Or we can replace molecules with Moles. The use the molecular weight of each

	$\begin{aligned} & \mathbf{H}_{3} \mathbf{C}-\mathrm{CH}_{2} \mathbf{- O H} \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \end{aligned}$	$3 \mathrm{O}_{2}$->	$2 \mathrm{CO}_{2}+$	$\mathbf{3} \mathrm{H}_{2} \mathrm{O}$
C	2×12.01		2×12.01	
H	6 x 1.01			6×1.01
O	1×16.00	6×16.00	4×16.00	3×16.00
$\mathbf{M w}=$	46.08	96.00	64.00	54.06

So $\mathbf{4 6 . 0 8} \mathbf{g}$ of ethanol reacts with $\mathbf{9 6 . 0 0} \mathbf{g}$ of oxygen to form $\mathbf{6 4 . 0 0} \mathbf{g}$ of carbon dioxide and $\mathbf{5 4 . 0 6} \mathbf{g}$ of water!

Percentage Composition: Mass \% A = Mass of A in the molecule / mass of the whole molecule * 100\%
Example 3.7 Formaldehyde $=\mathbf{C H}_{2} \mathbf{O} \quad$ Mw: C $\quad 1 \times 12.00=12.00 \mathrm{~g} / \mathrm{mol}$

$$
\begin{array}{cc}
\mathrm{H} & 2 \times 1.008=2.00 \mathrm{~g} / \mathrm{mol} \\
\mathrm{O} & 1 \times 16.00=\frac{16.00 \mathrm{~g} / \mathrm{mol}}{30.00 \mathrm{~g} / \mathrm{mol}}
\end{array}
$$

$\% \mathrm{C}=(12.00 \mathrm{~g} / \mathrm{mol} / 30.00 \mathrm{~g} / \mathrm{mol}) * 100 \%=40.00 \% \mathrm{C}$
$\% \mathbf{H}=(2.00 \mathrm{~g} / \mathrm{mol} / 30.00 \mathrm{~g} / \mathrm{mol}) * 100 \%=6.73 \% \mathrm{H}$
$\% \mathbf{O}=(16.00 \mathrm{~g} / \mathrm{mol} / 30.00 \mathrm{~g} / \mathrm{mol}) * 100 \%=53.3 \% \mathrm{O}$, or you can subtract the others from 100%
Acetaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2} \quad \mathrm{Mw}=60.00$, what are the $\%$ of C, H and O ?
Elemental Analysis - CHN Analysis:

Organic compounds are heated hot in a stream of oxygen.
The hydrogen reacts with oxygen to form water that is absorbed by drying agent.
The carbon reacts with oxygen to form CO_{2} which is passed through sodium hydroxide where it reacts to form sodium carbonate.

Nitrogen can be determined by a complex organic reaction and a GC.
The amount of Oxygen cannot easily be determined by normal methods and is usually determined by subtraction of the above from 100%.

CHN analysis gives: 4.24 mg of a sample $->6.21 \mathrm{mg}$ of CO_{2} and 2.54 mg of $\mathrm{H}_{2} \mathrm{O}$. What is the mass $\%$ of each element?

$\frac{6.21 \mathrm{mg} \mathrm{CO}_{2}}{1}$		$\frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}}$	x	$\frac{1 \text { mole C }}{1 \text { mole CO }_{2}}$	x	$\frac{12.0 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mole} \mathrm{C}}$	$=1.69 \times 10^{-3} \mathrm{~g} \mathrm{C}$
$\underline{2.54 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}}$	x	1 mole $\mathrm{H}_{2} \mathrm{O}$	x	2 mole H	x	1.01 g H	$=2.85 \times 10^{-3} \mathrm{~g} \mathrm{H}$
1		$18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$		1 mole $\mathrm{H}_{2} \mathrm{O}$		1 mole H	

Mass \% of Carbon $=(1.69 \mathrm{mg}$ C $/ 4.24 \mathrm{mg}$ sample $) * 100 \%=39.9 \%$ Carbon in the sample
Mass \% of Hydrogen $=(0.285 \mathrm{mg} \mathrm{H} / 4.24 \mathrm{mg}$ sample $) * 100 \%=6.72 \%$ Hydrogen in the sample

Determine Formulae

SEE EXAMPLES IN BOOK

CHN Calculations Procedure:

1. If the values are given in grams or milligrams, change the those units to \%.
2. Add up all of the percentages. If it does not equal 100%, then the remaining is assumed to be Oxygen.
3. Divide each of the percentages by the elemental weight for that element
4. Divide all of those numbers by the smallest number
5. These numbers represent the relative ratio of each of the elements.

If at least one number ends in $0.9,0.0$ or 0.1 go with those numbers
If at least one number ends in $0.2,0.3$ or 0.7 or 0.8 then multiply all of the numbers by 3
If at least one number ends in $0.4,0.5$ or 0.6 , then multiply all of the numbers by 2

Empirical Formulae - simplest formula. Shows the simplest ratios of numbers of the atoms

Determine the Empirical Formulae:

P 118 3.61 Potassium Manganate $=39.6 \% \mathrm{~K}, 27.9 \% \mathrm{Mn}, 32.5 \% \mathrm{O}$
P118 3.63 Acrylic Acid $=50.0 \%$ C, $5.6 \% \mathrm{H}$
Molecular Formulae from Empirical Formulae Need molecular weight
P 120, 3.95 MothBalls - para-dichlorobenzene has the composition: $\mathrm{C} 49.1 \%, \mathrm{H} 2.7 \%, \mathrm{Cl} 48.2 \%$ and a molecular weight of 147 . What is the molecular formulae?

SPECIAL PROBLEM An organic compound was found to have the following composition: C 92.15%, H 7.84%. Two separate determinations of the molecular weight found it to be approximately $25 \mathrm{~g} / \mathrm{mole}$ and a second trail gave $79 \mathrm{~g} /$ mole. What Molecular Formula would support these two molecular weights?

Table 3.1

Acetylene has an empirical formula of CH and a molecular formula of $\mathrm{C}_{2} \mathrm{H}_{2}$.
Benzene has an empirical formula of CH and a molecular formula of $\mathrm{C}_{6} \mathrm{H}_{6}$.

1. Calculate the $\%$ of C and H in each?
2. If you were given this $\% \mathrm{C}$ and $\% \mathrm{H}$, how would you differentiate between acetylene and benzene?

Exercise 3.11 A sample of Benzoic Acid gave the following analysis: C 68.8% and H 5.0\%. What is the empirical formula?

The $\%$ add up to $68.8+5.0=73.8$. Therefore it is assumed that O is $100 \%-73.8 \%=26.2 \%$.

C	$68.8 / 12.01$	$=5.73$	$5.73 / 1.64=3.49$	$3.49 * 2=6.98$ or @ 7
H	$5.0 / 1.008$	$=4.96$	$4.96 / 1.64=3.02$	$3.02 * 2=6.04$ or @ 6
O	$26.2 / 16.00$	$=1.64$	$1.64 / 1.64=1$	$1 * 2=2$

Therefore the empirical formula is $\mathrm{C}_{7} \mathbf{H}_{6} \mathrm{O}_{\mathbf{2}}$

Example 3.12 An acetic acid sample has C 39.9\%, H 6.7% and a molecular weight of approximately 60.0 $\mathrm{g} / \mathrm{mol}$. What is the molecular formula?

Again, the $\%$ add up to $39.9+6.7=46.6$. Therefore it is assumed that O is $100 \%-46.6 \%=54.5 \%$

C	$39.9 / 12.01$	$=3.32$	$3.32 / 3.32=1$	Empirical Formulae $=\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}$
H	$6.7 / 1.008$	$=6.65$	$6.65 / 3.32=2.00$	
O	$54.5 / 16.00$	$=3.41$	$3.41 / 3.32=1.03$	

Empirical Formula Weight $=\mathrm{C} \quad 1 * 12.01 \quad 12.01$
$\mathrm{H} \quad 2$ * $1.008 \quad 2.016$

O 1 * $16.00 \quad \underline{16.00}$
$30.026=30.03 \mathrm{~g} /$ mole
The molecular weight is 60.00 , the empirical formula weight is 30.03 , so $60.00 / 30.03=2$. Multiply the empirical formula by 2 to get the molecular formula $=\mathbf{C}_{2} \mathbf{H}_{\mathbf{4}} \mathbf{O}_{\mathbf{2}}$

Stoichiometry is the calculation of the quantities of reactants and products involved in a chemical reaction

1. Molar Interpretation of a Chemical Reaction

? $\quad 7.50 \mathrm{~g}$
P 118, 3.77 $3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}->2 \mathrm{HNO}_{3}+\mathrm{NO}$ How many g of NO_{2} is needed to make $7.50 \mathrm{~g} \mathrm{HNO}_{3}$
It will take 3 moles of NO_{2} reacting with one mole of $\mathrm{H}_{2} \mathrm{O}$ to produce 2 moles of HNO_{3} and one mole of NO.

$2 \mathrm{HNO}_{3}$		$3 \mathrm{NO}_{2}$	
H	$2 * 1.008=2.016$	N	$3 * 14.01=42.03$
N	$2 * 14.01=28.02$	O	$6 * 16.00=\underline{96.00}$
O	$6 * 16.00=\underline{96.00}$		$138.03 \mathrm{~g} / \mathrm{mole}$
	126.036		
	126.04 g		

$$
\frac{7.50 \mathrm{~g}\left[2 \mathrm{HNO}_{3}\right]}{126.04 \mathrm{~g} / \mathrm{mole}^{2}}=\frac{\mathrm{X}\left[3 \mathrm{NO}_{2}\right]}{138.03 \mathrm{~g} / \mathrm{mole}} \quad \mathrm{X}=8.21346 \mathrm{~g}=\mathbf{8 . 2 1} \mathbf{g ~ N O}_{2}
$$

$\mathbf{P ~ 1 2 1 , ~ 3 . 1 0 5 ~} \begin{aligned} & 2.60 \mathrm{Kg} \\ & \mathrm{CaO}\end{aligned}+\begin{aligned} & 2.60 \mathrm{Kg} \\ & 3 \mathrm{C}\end{aligned} \rightarrow \stackrel{?}{\mathrm{CaC}_{2}}+\mathrm{CO} \quad$ How many grams of CaC 2 are made?

2. Amounts of substances in a Chemical Reaction - \% Yield

Theoretical Yield is the amount of calculated product you can produce form a given amount of starting material. It is also know as 100% yield.
\% Yield = 100 \% * Actual Yield / Theoretical Yield
$10.6 \mathrm{~g} \quad 9.91 \mathrm{~g}$
$\mathbf{P} 120,3.1012 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \quad$ What is the Percent Yield?

3. Limiting Reactant

Example: 10 slices of bread and 2 slices of cheese to make sandwiches
Demo: Walk down the aisle dropping $\$ 100$ bills!
A. Calculate the number of moles of each compound.
B. Set up the ratio of number of moles of each compound to the Reactant Coefficient

Example:

NOTE I HAVE NOT RECHECKED THESE PROBLEMS 3-Oct-08
Use 1.0 mole of H_{2} and one mole of O_{2} and determine which is the limiting reagent.
$\mathbf{2} \mathbf{H}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
1 mole 1 mole
Determine the amount of H 2 O generated using each reactant

1 mole $\mathrm{O}_{2} * \frac{2 \mathrm{~m} \mathrm{H}_{2} \underline{\mathrm{O}}}{1 \mathrm{~mole}_{\mathrm{O}_{2}}}=2$ mole $\mathrm{H}_{2} \mathrm{O}$
$\mathbf{Z n}+\quad \mathbf{2} \mathbf{H C l} \rightarrow \mathbf{Z n C l}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}}$
0.30 mole 0.52 mole
0.30 mole $\mathrm{Zn} * 1{\text { mole } \mathrm{H}_{2}}=0.30{\text { mole } \mathrm{H}_{2}}^{2}$ 1 mole Zn
0.52 mole $\mathrm{HCl} * \underline{1 \mathrm{~mole} \mathrm{H}_{2}}=0.26{\text { mole } \mathrm{H}_{2}} \quad$ Smallest number, Limiting Reagent 2 mole HCl
$2 \mathrm{Al}+6 \mathbf{H C l} \rightarrow 2 \mathbf{A l C l}_{3}+\mathbf{3} \mathrm{H}_{2} \uparrow$
0.15 mole 0.35 mole ?
0.15 mole $\mathrm{Al} * 2$ mole $\mathrm{AlCl}_{3}=0.15$ mole AlCl_{3}

2 mole Al
0.35 mole $\mathrm{HCl} * \underline{2}$ mole $\mathrm{AlCl}_{3}=0.12{\text { mole } \mathrm{AlCl}_{3} \quad \text { Smallest number, Limiting Reagent }}^{2}$

```
2 CH3}\mathbf{3COH}+\mp@subsup{\textrm{O}}{2}{}->2\mp@subsup{\mathbf{CH}}{3}{}\mathbf{COOH
\(20.0 \mathrm{~g} \quad 10.0 \mathrm{~g}\) ?
```

$\mathrm{CH}_{3} \mathrm{COH}$		O_{2}			$\mathrm{CH}_{3} \mathrm{COOH}$		
C $2 * 12.01$	24.02				C 2 *	12.01	24.02
O 1 * 16.00	16.00				O 2*	16.00	32.00
H $4 * 1.008$	4.032	O 2	16.00	32.00	H 4 *	1.008	4.032
	44.0512						60.0512
	$44.05 \mathrm{~g} / \mathrm{mole}$	$32.00 \mathrm{~g} / \mathrm{mole}$			$60.05 \mathrm{~g} / \mathrm{mole}$		

$20.0 \mathrm{~g} / 44.05 \mathrm{~g} / \mathrm{mole}=0.454 \mathrm{~mole}$
$10.0 \mathrm{~g} / 32.00 \mathrm{~g} / \mathrm{mole}=0.313 \mathrm{~mole}$
0.454 mole $\mathrm{CH}_{3} \mathrm{COH} * \frac{2 \text { mole } \mathrm{CH}_{3}}{2} \frac{\mathrm{COOH}}{2 \text { mole } \mathrm{CH}_{3} \mathrm{COH}}=0.454$ mole $\mathrm{CH}_{3} \mathrm{COOH}$ Smallest number 2 mole $\mathrm{CH}_{3} \mathrm{COH}$

Limiting Reagent
0.313 mole $\mathrm{O} 2 * \frac{1 \text { mole }_{2}}{2 \text { mole } \mathrm{CH}_{3} \mathrm{COH}}=0.157 \mathrm{~mole}_{\mathrm{CH}}^{3} \mathbf{C O O H}$
0.454 mole $\mathrm{CH}_{3} \mathrm{COOH} * 60.05 \mathrm{~g} / \mathrm{mole}=27.3 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$

Now Determine the amount of the $\operatorname{Xcs} \mathrm{O}_{\mathbf{2}}$:
0.454 mole $\mathrm{CH}_{3} \mathrm{COH} * \frac{1 \text { mole }_{2}}{2 \text { mole } \mathrm{CH}_{3} \mathrm{COH}}=0.227 \mathrm{~mole}_{2}$
$0.227 \mathrm{~mole}_{2} * 32.00 \mathrm{~g} / \mathrm{mole}=7.26 \mathrm{~g} \mathrm{O}_{2}$ are used up.
$10.0 \mathrm{~g} \mathrm{O}_{2}$ starting $-7.26 \mathrm{~g} \mathrm{O}_{2}$ used up $=2.74 \mathrm{~g} \mathrm{O}_{2}$ remaining

0.25 moles 0.15 moles
$4 \mathrm{KO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$\frac{0.25 \mathrm{M}}{4 \mathrm{KO}_{2}} \quad=\frac{\mathrm{X}}{2 \mathrm{H}_{2} \mathrm{O}} \quad$| So, to react 0.25 moles of KO_{2} will require |
| :--- |
| $\mathrm{X}=0.125$ moles of $\mathrm{H}_{2} \mathrm{O}$. |

Since we have 0.15 moles of $\mathrm{H}_{2} \mathrm{O}$, the KO_{2} is the limiting reagent and the $\mathrm{H}_{2} \mathrm{O}$ is in excess.

P 119, 3.87
$\begin{array}{ll}35.4 \mathrm{~g} \\ \mathrm{CO} & 10.2 \mathrm{~g} \\ \mathrm{H}_{2} & \stackrel{?}{\mathrm{C}} \mathrm{H}_{3} \mathrm{OH} \quad \text { What reactant is in xcs? }\end{array}$
How much of the non-xcs reactant remains?
P105 $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ (gas)
1 Kg ? g of
P 120, 3.101

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \\
& 10.6 \mathrm{~g} \\
& 9.91 \mathrm{~g} \quad \text { What is the \% yield? }
\end{aligned}
$$

Rev 8 Book Example Problems starting on page 114

$\begin{array}{llll}3.1 & 3.3 & 3.4 & 3.7\end{array}$
$\begin{array}{lllll}3.21 & 3.22 & 3.24 & 3.31 & 3.32\end{array}$
$\begin{array}{lll}3.13 & 3.14 & 3.17\end{array}$
3.77
$3.95 \quad 3.101 \quad 3.105$
$\begin{array}{llll}3.51 & 3.55 & 3.61 & 3.63\end{array}$
$3.85 \quad 3.87$
3.117 - Instructor gets video

Steps for working a problem

5.01 grams of Iron (III) Carbonate is reacted with xcs [Excess] Sulfurous Acid. What are the products and how much of each is formed?

1. Translate the English to Chemical REACTANTS
2. Balance the ions in each Reactant Compound so the net charge is zero
$\mathrm{FeCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{3}->$
$\mathrm{Fe}^{+3} \mathrm{CO}_{3}^{-2}+\mathrm{H}_{2}{ }^{+1 \mathrm{ea}=+2} \mathrm{SO}_{3}^{-2}->$
$\mathrm{Fe}_{2}{ }^{+3}\left(\mathrm{CO}_{3}\right)_{3}^{-2}+\mathrm{H}_{2}^{+1 \mathrm{ea}=+2} \mathrm{SO}_{3}^{-2}->$
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{SO}_{3}->$
3. Determine the Products and write down the basic compounds. $\mathrm{AB}+\mathrm{CD}->\mathrm{AD}+\mathrm{CB}$

Use the simple ionic exchange
4. Balance the ions in each Product Compound so the net charge is zero
5. Balance the equation of there are equal number of each element on each side of the reaction arrow
6. With the known amount of starting compound / reactant, determine the molecular weight of that compound
7. Determine the molecular weight of each of the Product Compounds.
8. Set up the simple ratio of known amount of starting material to molecular weight equals x over the mw of each product and calculate the amount of each product. Don't forget to put in all the units!!
9. Write out the answers - the amount of each product in grams [or milligrams] corrected to the proper number of significant digits with the units.

